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Abstract

Shared-memory multiprocessors commonly use shared variables for synchronization. Our
simulations of real parallel applications show that large-scale cache-coherent
multiprocessors suffer significant amounts of invalidation traffic due to synchronization.
Large multiprocessors that do not cache synchronization variables are often more severely
impacted. If this synchronization traffic is not reduced or managed adequately,
synchronization references can cause sever congestion in the network. We propose a class
of adaptive backoff methods that do not use any extra hardware and can significantly
reduce the memory traffic to synchronization variables. These methods use
synchronization state to reduce polling of synchronization variables. Our simulations show
that when the number of processors participating in a barrier synchronization is small
compared to the time of arrival of the processors, reductions of 20 percent to over 95
percent in synchronization traffic can be achieved at no extra cost. In other situations
adaptive backoff techniques result in a tradeoff between reduced network accesses and
increased processor idle time.
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Abstract

A two-dimensional array is called monotone if the maximum entry in its i-th row
lies directly below or to the right of the maximum entry in its (i - 1)-st row. (If a row
has several maxima, then we take the leftmost one.) A two-dimensional array is called
totally monotone if every 2 x 2 subarray (i.e., every 2 x 2 minor) is monotone. Totally
monotone arrays were introduced by Aggarwal. Klawe, Moran, Shor, and Wilber, who
showed that several problems in computational geometry could be reduced to the prob-
lem of finding the maximum entry in each row of a totally monotone array. They also
gave a sequential algorithm for computing the row maxima of an n x n totally monotone
array in 0(n) time. In this paper, we generalize the notion of two-dimensional totally
monotone arrays to multidimensional arrays, present sequential algorithms for finding
maxima in such arrays, and exhibit a wide variety of problems (involving computa-
tional geometry, dynamic programming, and VLSI river routing) that can be solved
efficiently using these array-searching algorithms.

1 Introduction

1.1 Motivation

A two-dimensional array A = {aij} is called monotone if the maximum entry in its i-th row
lies directly below or to the right of the maximum entry in its (i - 1)-st row. (If a row has
several maxima, then we take the leftmost one.) A is called totally monotone if every 2 x 2
subarray (i.e., every 2 x 2 minor) is monotone. In other words, for all i < k and j < 1,

*Portions of this paper appear in the Proceedings of the 29th Annual Symposium on Foundations of
Computer Science, 1988.
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Figure 1.1: For i < k and j < 1, d(pi,qj) + d(pk, qj) d(pi,qj) + d(pk,qj).

a,j < ai,j implies akj < ak,. The row maxima problem for A is that of finding the maximum
entry in each row of the array. Now suppose some oracle has an n x m totally monotone
array A and that we wish to solve the row maxima problem for A by asking the oracle for
as few entries of A as possible. Aggarwal et al. [AKM*87] showed that O(n + in) queries to
the oracle suffice.

Although the problem of finding the row maxima in a two-dimensional totally monotone
array may seem rather odd at first glance, [AKM*87] showed that several problems in com-
putational geometry can be reduced to one or more instances of this problem. The following /
example illustrates one such reduction (borrowed from [AKM*871).

Suppose we are given a convex polygon and that we divide it into two convex chains
P and Q (containing n and m vertices, respectively) by removing two edges, as is shown
in Figure 1.1. Let pi,...,p, denote the vertices of P in counterclockwise order and let

q,.,, denote the vertices of Q in counterclockwise order. Then for 1 < i < k < n and
I < j < I < m, consider the quadrilateral formed by pi, Pk, qj, and qi. By the quadrangle
inequality (which states that the sum of the lengths of the diagonals of any quadrilateral is
greater than the sum of the lengths of any pair of opposite sides), we have

d(pi, qj) + d(pk,q) >_ d(pi, qj) + '"- qj).

Thus, if we imagine an n x m array A = {ai,} where aj4  be Euclidean distance from
vertex pi E P to vertex qj E Q, then this array is totally monotone, since we cannot have
both ai,, < aij and ak, 2! ak,i. Also, since any entry of this array can be computed in
constant time (it being the Euclidean distance between two points), asking for an entry from
an oracle simply corresponds to evaluating the distance between the corresponding points.
Hence, by using [AKM*87], we can find the farthest vertex in Q for every vertex in P by
evaluating only O(n + m) distances. In fact, [AKM*87] showed that the time required in
addition to that for evaluating these O(n + rn) distances is also linear in n + m. This implies
that the farthest neighbor problem for convex chains can be solved in linear time and solves
an open problem in [Tou83].
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1.2 Previous Results

O As the previous example illustrates, the notion of total monotonicity is closely related to

the quadrangle inequality. (It is this relation that makes the combinatorial formulation of
problems in terms of totally monotone arrays such a useful one.) Another related property

of two-dimensional arrays, even more closely tied to the quadrangle inequality, was studied

previously in the context of certain transportation problems. In the late eighteenth century,

G. Monge [Mon81] observed that if unit quantities (cannonballs, for example) need to be

transported from locations X and Y (supply depots) in the plane to locations Z and W

(artillery batteries), not necessarily respectively, in such a way as to minimize the total

distance traveled, then the paths followed in transportihg these quantities must not intersect.

In 1961, A.J. Hoffman [Hof6l] elaborated upon this idea by calling an n x m array C = {cij}

a Monge array if cjj + ci+,,j+l < ci,j+l + ci+,j for 1 :5 i < n and 1 < j < m and by providing

a greedy algorithm for the transportation problem when the cost array C = {ci6,} is a

Monge array'. Monge and Hoffman's observations together imply a greedy algorithm for the

transportation problem when the sources lie on one line in the plane and the sinks lie on a

second, parallel line.
Note that an equivalent way to define an n x rn Monge array C = {ci,,} is to require

c,,j + Ckj < cj + ckj for 1 < i < k < n and 1 < < I < rn, as the following proposition
shows.

Proposition 1.1 If C = {cij} is an n x m Monge array, then for 1 < i < k < n and

1 < < 1 cM, C, + ck,l Cij + ck,..

Proof Consider anyi, j, k, and such that 1 <i < k < nand 1 <j < l<rn. By the

definition of a Monge array,

Cs3 + Cs+ l,t+l 5 C1,,+ 1 + C.+l,t

forI 1 s < n and 1 <t <m. Thus, for 1 < t <im,

k-I k-I

(c-,t + c.+i,,+,) < Z(cat+ + c,+,,t).
Sffi S=i

Cancelling identical terms from both sides of this inequality, we obtain

Ci,t + ck,t+l < Ci,t+l + Ck,t.

Consequently,
1-1 i-1

Z(cia + CLt+i) E(cit+1 + ckt).
t=j t=j

Again cancelling identical terms, we obtain

C1,j + Ck,j < Cij + Ck,j,

'in fact, Hoffman [Hof6il provided a necessary and sufficient condition that the cost array C must satisfy
for his greedy algorithm to work. Furthermore, Alon, Cosares, Hochbaum, and Shamir [ACHS88] have
recently developed an efficient algorithm for testing whether this necessary and sufficient condition holds.
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the desired result. U

We will follow Hoffman's terminology and call ci j + Ckj cj + Ckj the Monge condition
and C.j + c, > c ,,j + ck, the inverse Monge condition. Note that the inverse Monge condition
implies total monotonicity, but not vice-versa. Although total monotonicity is a somewhat
weaker constraint than the inverse Monge condition, it turns out that all of the applications
given in this paper, as well as those given in [AKM*87, Wi188), obey the Monge or inverse
Monge condition. However, we usually require only total monotonicity to obtain our results.

We will call an array Monge if it follows either the Monge condition or the inverse Monge
condition, since an array satisfying the Monge condition may be converted into an array
satisfying the inverse Monge condition (and vice-versa) by reversing the order of its columns.
Note that in a similar fashion, we can flip the signs in our definition of total monotonicity
(at least in the case of two-dimensional arrays) and convert back and forth between totally
monotone arrays and arrays A = {aij} such that aij > aij implies ak,j > ak,j for all i < k
and j < I. Furthermore, the problem of finding the maximum entry in each row of a two-
dimensional array A and the problem of finding the minimum entry in each row of A (the
row minima problem) are equivalent - we can convert one to the other by simply negating
the entries of A and reversing the order of its columns. We make use of these dualities
throughout this paper.

As mentioned earlier, totally monotone arrays were first introduced by Aggarwal, Klawe,
Moran, Shor, and Wilber in [AKM*87], who provided a linear time algorithm for com-
puting the row maxima in such arrays. Previous applications of this array-searching algo-
rithm include the following. (AKM*87] showed that some channel routing problems can be
solved in linear time using these techniques, thereby improving previous O(n Ig n) time algo-
rithms. Aggarwal and Suri [AS87] used array-searching to find the largest empty rectangle
in O(n lg2 n) time. Wilber [Wil88] applied array-searching techniques to an instance of dy-
namic programming and showed that the concave least-weight subsequence problem can be
solved in linear time; this improved the result of Hirschberg and Larmore [HL87]. Finally,
Klawe and Kleitman [KK88] used array-searching to improve a previous result of [AK88] in
computational geometry.

1.3 Main Results of this Paper

In this paper, we present a framework that allows us to efficiently solve a wide variety of
problems involving the quadrangle inequality. We limit ourselves to sequential computation;
results in the realm of parallel computation are given in (AP89J. This paper derives its
primary inspiration from [AKM*87 and [YaoSO]; it generalizes and incorporates several
results provided in these papers. (The relation of [AKM*87] to this paper will be observed
throughout, but that of [YaoSO] is more implicit. We assume total familiarity of the reader
with (AKM*871 and [Yao801.)

The balance of this paper is organized as follows.
Section 2 introduces the notion of multidimensional monotone arrays and provides se-

quential algorithms for searching in such arrays. We use the problem of finding a maximum
perimeter d-gon inscribed in a given convex n-gon as a prototype example. For this problem,
we achieve the time bound of [AKM*871.
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Section 3 applies the monotone array framework to the problem of finding minimum area
and minimum perimeter circumscribing polygons. For the minimum area circumscribing
d-gon problem, we obtain an O(dn + n ig n) time algorithm, thereby improving the best
previous result of [AKM*87] by a factor of O((n lg d)/(d+lg n)). For the minimum perimeter
circumscribing triangle problem, we obtain an O(n lg n) time algorithm, thereby improving
the result of [DePS7I by an 0(n 2 / lg n) factor.

Section 4 presents efficient algorithms for dynamic programming problems that obey the
Monge condition or the inverse Monge condition. We give an O(n 2 ) time algorithm for
Frances Yao's [YaoS0] dynamic programming problem using the monotone array framework.
Although our algorithm is no better than Yao's in terms of asymptotic complexity (and
probably worse in practice), it provides insight into other dynamic programming problems
that obey Monge conditions. We then use this insight to reduce the time complexity of a
particular dynamic programming problem related to biology from O(n 2 lg2 n) [EGG88] to
O(n 2 lg n).

Section 5 presents efficient sequential algorithms for river routing in VLSI. We show that
the results of [AKMNk87I can be used to solve the offset range problem in linear time under
very weak assumptions regarding the routing rules for wires. This generalizes a recent result
of Siegel [SieSS], who was able to obti,- a linear time algorithm for only a very restricted
class of wiring rules.

Section 6 discusses open problems.

2 Multidimensional Monotone Arrays

2.1 Basic Definitions and Algorithms

We begin by extending our notions of monotone, totally monotone, and Monge arrays to
higher dimensions. For d > 3, let A = {aili2,....} be an ni X n 2 x ... x nd array. Let
i2(il,..,ia(i ) denote the second through d-th coordinates of the maximum entry in the
(d - 1)-dimensional plane consisting of those entries whose first coordinate is il, i.e.,

ai1 ,i2(i )..id() = .max ai,,i2, ..id.

(If the plane corresponding to i1 contains multiple maxima, we chose the first of the maxima
ordered lexicographically by their second through d-th coordinates.) We call these entries
plane maxima.

Definition 2.1 A is monotone if

1. for 1 < il < j, < ni, we have ik(ij) < ik(ji) for all k between 2 and d, and

2. for 1 < il < nj, the (d - 1)-dimensional plane of A consisting of those entries whose
first coordinate is il is monotone.

Definition 2.2 A is totally monotone if every 2 x 2 x x 2 d-dimensional subarray of A
is monotone.
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Definition 2.3 A satisfies the Monge condition if every two-dimensional plane of A corre-
sponding to fired values of d-2 of A 's d coordinates satisfies the Monge condition. Similarly,
A satisfies the inverse Monge condition if every two-dimensional plane of A corresponding
to fixed values of d - 2 of A 's d coordinates satisfies the inverse Monge condition. Finally,
A is Monge if it satisfies either the Monge condition or the inverse Monge condition.

Note that every subarray of a totally monotone array is also totally monotone. Similarly,
every subarray of an array satisfying the Monge condition satisfies the Monge condition, and
every subarray of an array satisfying the inverse Monge condition satisfies the inverse Monge
condition.

Proposition 2.4 Suppose A satisfies the inverse Monge condition, and consider any two
entries ai i2. and al J 2 .....3J of A. For 1 < k < d, let Xk = min{ik,jk} and let Yk =

max{ik,jkl. Then

a'l . + a-d ,V2,, . .d > ail,i2. .,id + ai,2  .

Proof We prove this proposition by induction on d. For the base case of d = 2, the
proposition follows immediately from the definition of a two-dimensional array satisfying the
inverse Monge condition.

Now suppose the proposition holds for all (d - 1)-dimensional arrays satisfying the in-
verse Monge condition, and consider a d-dimensional array A satisfying the inverse Monge
condition and any two entries ai1,12 ..... i and 011,32....jd from A. Without loss of generality, we
assume il < j1. The proof then breaks down into two cases.

Case 1 For all k between 2 and d, ik > jk (i.e., xk = jk and yk = ik).

Consider the (d - 1)-dimensional subarray of A containing those entries whose second
coordinate is i2 and the (d - 1)-dimensional subarray of A containing those entries whose
second coordinate is j2. Since every subarray of an array satisfying the inverse Monge
condition satisfies the inverse Monge condition, we can invoke the inductive hypothesis on
these subarrays and obtain

ail,i2 ,j3.. d 1 ,i2,i3.,id al ,i3,i3.id + al ,i ,-3..d

and
ail 12,3,..jd + ai 2,i32 ,,i d ail J2, .. i + ailJ2,J3,...4d.

Similarly, we can invoke the inductive hypothesis on the two-dimensional subarray containing
those entries whose third through d-th coordinates are i3,. .. , id, respectively, and on the
two-dimensional subarray containing those entries whose third through d-th coordinates are
h,... ,Jd, respectively. This gives us

ail , i3,...id + aj,i,i3 .. id ail 2,i3,i3. id + ajl, j 2 , i 3,. ... i

and
ail,j2,j3....jd + aJl,i,i2 3,13 . d ...,.243. jd+ aj1,j2,j3..d"

6



Summing these four inequalities and cancelling, we find

2ail,12,33 ..... 3d + 2a1 ,i2 > 2ail , 2 ,i3,. id + 2a j,2,J3 . .d

Since x, = il, Y1 = J2, and for 2 < k < d, Xk = jk and Yk = ik, this gives the desired result.

Case 2 There exists an 1, 2 < I < n, such that it < 'I (i.e., xj = ?I and y1 = ji).

Consider the (d- 1)-dimensional subarray containing those entries whose first coordinate
is i1 and the (d - 1)-dimensional subarray containing those entries whose first coordinate is
jj. By applying the inductive hypothesis to these subarrays, we obtain

ail --T2,X3....... -" a+,,2 s . d aY,,i 2 ,i3. -d + a,j 2,j3. .Jd

and
a.,2, X3 ...... Td + al 2 ,V3 ..... ld ajl,i,i3....i + a31,? 2,j3....jd

Similarly, by applying the inductive hypothesis to the (d- 1)-dimensional subarray containing
those entries whose l-th coordinate is it and to the (d - 1)-dimensional subarray containing
those entries whose l-th coordinate is ji, we obtain

al -. r3..Xd + ail ,i,4... -- ail,i,,i3 . d + 3 1a ,a 2 ,X3.,Xd

and
ail,j3,,, j d a i Y2.V3,-

" 
ai 2..... Vd > a+ ailj2,j3,....jd'

Summing these four inequalities and cancelling, we find

2aiaT2,X3 .....Zd + 2a ,,y2.y,...., ? 2ai ,, -,,,.  i + 2ajj2,j3,...d

Since x, = il and yt = jj, this gives the desired result. U

Lemma 2.5 If A satisfies the inverse Monge condition, then A is totally monotone.

Proof We again use induction on d. For the base case of d = 2, the lemma follows
immediately, since every two-dimensional array satisfying the inverse Monge condition is
totally monotone.

Now suppose the lemma holds for all (d - 1)-dimensional arrays, and consider a d-
dimensional array A satisfying the inverse Monge condition. Since every subarray of an
array satisfying the inverse Monge condition satisfies the inverse Monge condition, every
(d - 1)-dimensional plane of A consisting of those entries whose first coordinate is some fixed
value satisfies the inverse Monge condition. Thus, by the induction hypothesis, each of these
planes is totally monotone. This means A satisfies the second property of totally monotone
arrays.

Now suppose A does not satisfy the first property of totally monotone arrays, i.e., there
exist i21 , jj, and 1, 1 < il < J, < n1 and 2 < I < d, such that i1(ij) > i1(j1 ). For 2 < k < d,
let Xk = min{ik(iI),ik(j,)} and let Yk = maX{ik(i,),ik(j,)}. By Proposition 2.4,

ai, .....Xd + a 3 , . . l/, a,,i(i). (1) a+ Y2,,i 2 ( 1Y a..

7



This gives us i ntradiction, as the definition of plane maxima requires

and

Note that the converse of Lemma 2.5 is false, i.e., totally monotone arrays do not neces-
sarily satisfy the inverse Monge condition. Thus, total monotonicity is a weaker condition,

just as it was in the two-dimensional case.
We call the problem of computing the plane maxima of an array A the plane maxima

problem for A. The following theorem gives an upper bound on the time necessary to solve
the plane maxima problem for a totally monotone array.

Theorem 2.6 For d > 2, the plane maxima problem for an n, x n 2 x ... x nd d-dimensional
totally monotone array A can be solved in O((nd + nd-1) 'k=1lgnk) time.

Proof The proof is by induction on d. For the base case of d = 2, we simply apply the
O(n) time algorithm of (AKM*87]. For larger values of d, we use a simple divide-and-
conquer approach. We begin by computing the maximum entry in the plane corresponding
to il = [ni/2]. By induction, this can be done in O((nd + nd-1) rld=2 lgnk) time - we
simply compute the plane maxima in this plane and then spend an additional O(n) time
to compute the maximum of these maxima. This gives us ik(il) for 2 < k < d. Now
since A is monotone, we know that for j, < il, we must have ik(jl) < i,(il) for 2 <
k < d, and similarly for j, > il, we must have ik(jil) > iI(ii) for 2 < k < d. Thus,
we need only consider two smaller arrays, one (i1 - 1) x i2(il) x - x id(il) and the other
(n, - il) x (n2 - i2(i1 ) + 1) x ... X (id - id(i1) + 1), in computing the remaining plane maxima.
This gives a recurrence for the time T(n, n-, .., nd) necessary to solve the plane maxima
problem for A whose solution is O((nd + nd-1) rld-2 lg fk).

Note that the only place we take advantage of A's totally monotonicity is in solving the
row maxima problem for certain two-dimensional subarrays - we can do almost as well (i.e.,
compute the plane maxima of A in O(nd 'fld lg nk) time) using only monotonicity. Also
note that finding the plane minima in a totally monotone array A is no harder that finding
the plane maxima - we just negate all of A's entries as we did in the two-dimensional case
and reverse the order of some of its coordinates. However, we cannot convert back and forth
between arrays satisfying the Monge and inverse Monge cone.itions, as we could in the case
of two dimensional arrays.

2.2 An Example

To motivate the definitions of the previous subsection, let us consider a concrete example.
The maximum perimeter inscribed d-gon problem is defined as follows: given an n-vertex
convex polygon P, find a d-gon Q contained in P with maximum perimeter. It is easy to
show that Q's vertices must be vertices of P. Thus, if P,.. .,p, denote the vertices of P

8



and per(iI,i 2 .... ,id) denotes the perimeter of the d-gon corresponding to pip, ,..I., p,, we
want to find the i, i2,... , id maximizing per(il, i2 , . . , id).

For the case of d = 3 (the maximum perimeter inscribed triangle problem), we consider
the three-dimensional array A = {ai,3 ,k} where

f per(i,j,k) ifi <j < k
a, -oc otherwise.

If we can find the maximum entry in A, we can solve the maximum perimeter inscribed
triangle problem for P. Note that we do not explicitly compute all of the entries in A;
rather, every time our array-searching algorithm needs a particular entry from A, we just
calculate the perimeter of the corresponding triangle.

Now it is easy to verify that the array A defined above satisfies the inverse Monge
condition. Furthermore, obtaining a particular entry in the array requires only constant
time. Thus, we can apply Theorem 2.6 and obtain the plane maxima of A in O(n lg n) time.
We can then compute the maximum of these maxima in O(n) additional time, which gives
a maximum perimeter inscribed triangle.

This result equals the result obtained by Boyce et al. in [BDDG85]; moreover, it represents
a simpler solution to the problem. as Boyce et al. require a number of additional geometric
properties of inscribed triangles that complicate their proof.

In a similar fashion, the maximum perimeter inscribed d-gon problem can be reduced to
the problem of finding the maximum entry in the d-dimensional array A = {a12,i2. .} where

Sp *d' ifi < i2 < ... < ia,1 .,2 . pei= z-,. otherwise.

It is easy to verify that A satisfies the inverse Monge condition. Furthermore, O(d) time suf-
fices to compute any entry in A. Thus, we can apply Theorem 2.6 and obtain an O(dn lgd- 2 n)
time algorithm for this problem.

It remains open whether one can do better than O(n Ig n) time for the inscribed trian-
gle problem, but the general inscribed d-gon problem can be solved more efficiently if we
take advantage of some additional structure of the corresponding d-dimensional array; this
additional structure is discussed in the next two subsections.

2.3 Monge-Composite Arrays

An important subclass of multidimensional totally monotone arrays consists of what we call
Monge-composite arrays. As one might expect, an array is Monge-composite if it is composed
of two-dimensional Monge arrays. (These arrays may be either variety of Monge array, i.e.,
they can obey either the Monge condition or the inverse Monge condition, but they all must
be of the same variety.) More precisely, a d-dimensional Monge-composite array is the sum
of d-dimensional extensions of two-dimensional Monge arrays, where we iefine the sum of
two arrays and the extension of an array as follows.

Let A = {ai, ..... i,} and B = {bi. ..... i,} be ni x ... x nd d-dimensional arrays. The sum of
A and B (written A + B) is the n, x ... x nd d-dimensional array C = {ci, ..... Jd} where

.Ci.. .... i, = ai,....i, +bi,..id,

9



for all i,,... ,id.
Now let E = {eil.. } be an n x ... x nd d-dimensional array. For any dimension k

between 1 and d + 1 and any size fh, the

ni X .. X nk-I X hX x "k  X x n d

(d + 1)-dimensional array 1 = {f. } is an extension of E if

Si '..,k- 
t
kik+2,..,d+2 = 'i]..k-lI + .. i l '

for all il,.. ., id+ (F is just h copies of E, each one a plane of F corresponding to some
fixed value of F's k-th coordinate.) Furthermore, any extension of an extension of E is also
an extension of E.

From these definitions, it is clear that each entry of a d-dimensional Monge-composite
array A = {ai. ..... id) may be written

a , d-, (k ,)
k<a

where for all k < 1, the nk x -a array IV(ka) - {k,! :) is a Monge array.

Proposition 2.7 The sum of two MAonge arrays is also Monge.

Proposition 2.8 The two-dimensional extension of a vector or a scalar is Monge.

Proposition 2.9 Every Monge-composite array A is Monge.

Proof We must show that all two-dimensional planes of A, corresponding to fixed values
of d - 2 of A's d coordinates, are Monge. To see why this is true, consider any such plane.
This plane is the sum of a two-dimensional Monge array, some vectors, and some scalars;
thus, the plane is Monge. M

Two special cases of Monge-composite arrays are path- and cycle-decomposable arrays.
An array A = {a1 ..... Jd} is path-decomposable if each of its entries satisfies

W{1,2) _(2,3) _(d-i,d)
ai,. id = Wt,0 2 + Wi2,i3 + Wi- 2,i,

where the w's are entries from two-dimensional Monge arrays W (
k
') as before. A is cycle-

decomposable if each of its entries satisfies
(1,2) + (d-l d) (d,1)

at,.., = wi2,i 2  + • lid W,i,•

Theorem 2.10 The plane maxima of an n, x ... x nd d-dimensional path-decomposable
array A can be computed in k l nk) time.

1
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Proof The proof is by induction on d. The base case of d = 2 follows immediately
from [AKM*87]. For d > 2. we assume by induction that the theorem holds for all lower-
dimensional path-decomposable arrays. Since A = {ai,..,id} is path-decomposable, we can
write

= (1,2) W(2.3) (d-l.d)
S2 12 12,i3 + + ""- - lid

where the w's are entries from two-dimensional Monge arrays. Now consider the n2 X ... x nd
(d - 1)-dimensional array B = {bi2 ..... d} where

= (2,3) + (d1d)
26 +d + Wd-2i .d

By induction, we can find the plane maxima of B in o(d= nk) time. Since the maximum
entry in the plane of A corresponding to a particular value il of the first coordinate is just

(1,2) . "5 .(2.3) (d-1,d)rain w,: + min ' t21 d-1 Ad

'22 d i2 ,i 3  + Wid-ltd I

we need only find the row maxima ii. the sum of IV("2 ) and the appropriate two-dimensional
extension of the vector of Bs plane maxima. Since this sum is a Monge array, we can find
its row maxima in an additional O(n, + n2) time, which yields the desired result. a

Theorem 2.11 The plane maxima of an n, x. . nd d-dimensional cycle-decomposable array
A can be computed in O((_].=2 nk)lgn1) time.

0Proof First note that each plane Ai, of A. corresponding to a fixed value i of A's first
coordinate, is path-decomposable, since

Ai, =  11.,(2,3) + 1.+,(3.4) . . . + 11/(d-l,d),

where 111(2.3) is the sum of 11'(2 '3) and two-dimensional extensions of the vectors V2 = {w!12 ) }

and Vd-{ i

This means we can compute a particular plane's maximum entry in O(Fk=2 alk) time.
Combining this with the divide-and-conquer approach of Theorem 2.6, we obtain the desired
result. U

2.4 More Examples
Returning to th,' maximum perimeter inscribed d-gon problem, it is easy to verify that
the d-dimensic, " array A defined in Subsection 2.2 is cycle-decomposable. Thus, we can
apply Theorer - . and obtain an O(dn lg n) time algorithm for the problem. Furthermore,
it is possible to red.:tre this time bound to O(dn + n Ig n) using one additional technique
from [BDDC-851 " -.. allows us to restrict our attention to a relatively small subarray of
A. (We prese- t this technique in Subsection 3.1 in the context of the minimum perimeter
circumscribing d-gon problem.)

As Boyce et al. [BDDG85] note, the same approach can also be used to solve the max-
imum area inscribed d-gon problem in O(dn + n Ig n) time. Although the corresponding
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d-dimensional array does not satisfy the inverse Monge condition (nor is it totally mono-
tone), it can be shown that we only need to consider certain subarrays of this array, and i
these subarrays do satisfy the inverse Monge condition.

Another application in which multidimensional Monge-composite arrays naturally arise is
the following problem: given a convex n-gon P with vertices Pi, P2, ... , , in counterclockwise
order, find for each vertex pi of P the longest d-link convex path from pi to pi. Corresponding
to this problem is a (d - 1)-dimensional path-decomposable array, whose plane maxima are
these maximal paths. Thus, we can apply Theorem 2.10 and obtain these paths in 0(dn)
time. (This result is implicit in [AKM*87].)

Note that not all applications involve path- or cycle-decomposable arrays; consider, for
example, the problem of finding a maximum weight d-clique of vertices from a convex n-gon,
where the weight of a clique is defined to be the sum over all pairs of vertices in the clique
of the distance between the two vertices. An instance of this problem corresponds to a d-
dimensional Monge-composite array. each of whose entries may be computed in O(dP) time.
and thus may be solved in 0(d 2n lgd- 2 n) time. Furthermore, the d-dimensional array we
consider in Subsection 3.2 in connection with the minimum perimeter circumscribing triangle
problem is not even Monge-composite.

3 Finding Minimum Circumscribing Polygons

In this section, we apply algorithms for searching in totally monotone arrays to the problem
of finding minimum area and minimum perimeter circumscribing polygons. Given an n-
vertex convex polygon P and an integer d between 3 and n, we want to find a minimum
area or minimum perimeter d-gon Q containing P. Note that for both area and perimeter
minimization, Q must clearly be convex, and each of its d edges must contact P. Also note
that if we can find area- and perimeter-optimal d-gons circumscribing convex n-gons, then we
can also find area- and perimeter-optimal convex d-gons containing arbitrary sets of points
in the plane, since any convex polygon containing a set of points must contain the points'
convex hull.

Chang and Yap [CY84] showed that a minimum area circumscribing d-gon can be found in
O(n3 ig d) time using dynamic programming. Aggarwal, Chang, and Yap [ACY85] improved
this result to 0(n 2 1gdlgn) time, and it is further improved to 0(n2 1gd) in [AKM*87].
We extend (in a non-trivial manner) the techniques of Boyce et al. [BDDG85] for finding
maximum perimeter inscribed d-gons to obtain an O(dn + n Ig n) time algorithm for the
minimum area circumscribing d-gon problem. We present this algorithm in Subsection 3.1.

As for the perimeter minimization problem, the only known results are for d = 3. DePano
[DeP87I showed that the minimum perimeter circumscribing triangle can be computed in
O(n3) time. In Subsection 3.2, we improve this to O(n Ig n) time using a straightforward
application of our techniques for searching in three-dimensional totally monotone arrays.

In describing our algorithms for finding minimum area and minimum perimeter circum-
scribing d-gons, we use the following conventions. For any convex m-gon R, we let vR, ... I, R

and er,..., e denote R's vertices and edges, respectively, in counterclockwise order, where
eI connects vI and v(+1),od. We use the letter P for the convex n-gon to be circumscribed
and the letter Q for convex d-gons circumscribing P.

12



We also need the following definitions.

1. If an edge e9 of a circumscribing polygon Q touches P (which it must, if Q has minimal
area or perimeter), then its contact point is the part of P that it touches. A contact
point is always either an edge or a vertex of P.

2. Two circumscribing polygons Q and Q' interleave if the contact points of Q and Q'
alternate. In other words, between every two consecutive contact points of Q (in
the counterclockwise ordering of vertices and edges of P) is a contact point of Q'
(perhaps one of the two consecutive contact points of Q). Similarly, between every two
consecutive contact points of Q' is a contact point of Q.

3. An edge e9 of Q is flush with P if its contact point is an edge. Q itself is flush with P
if all its edges are flush with P.

4. An edge e9 of Q is balanced if its midpoint lies on P.

5. An edge e9 of Q determines two half-planes; let Hi denote the half-plane that does not
contain P. e9 is a c-edge if the lines containing its neighbors e, and e converge

(i.e., intersect) in H, or are parallel; otherwise, e9 is a d-edge. Equivalently, e9 is a
c-edge if the sum of the two internal angles of Q corresponding to e? 's endpoints is
greater than or equal to 7r, and e9 is a d-edge if this sum is less than 7r.

3.1 Area Minimization

Our algorithm for finding a minimum area circumscribing d-gon has two parts. First, we
restrict our attention to flush circumscribing d-gons and use the techniques of [BDDG85]
to find one with minimal area. Then, we use this minimum area flush d-gon (and a lemma
due to DePano [DeP87]) to obtain a circumscribing d-gon, possibly not flush, whose area is
minimal among all circumscribing d-gons.

3.1.1 Finding the Best Flush d-gon

The techniques given by Boyce et al. [BDDG85] for finding a maximum perimeter inscribed d-
gon can also be used to find a minimum area flush circumscribing d-gon in O(dn lg n+n Ig2 n)
time. (This was pointed out in the concluding section of [BDDG85].) Furthermore, the
techniques of [AKM*87] reduce the time complexity of this problem to O(dn + n Ig n). For
the sake of completeness, we will describe this result, recasting it in terms of multidimensional
totally monotone arrays.

For 1 < i < n, let r be the ray containing ef with vF as its origin, and let rSW

be the ray containing ef with v'+1 as its origin. (The superscript of rf" indicates that
it is a counterclockwise "extension" of ef, and the superscript of rf' indicates that it is a
clockwise "extension.") If r : intersects r ", let RA, be the region outside P bounded by
r, , ? w, and the edges e,.. . , e;- of P (the shaded region in Figure 3.1). Now consider
the two-dimensional arrays W = {w,j} and W4V' = {w,}, where

{ area(Ri,) if/< j and rfcw intersects r7, and
Wij 0 otherwise,

13
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I I I I I i . .

ei P

Figure 3.1: If r'Cw intersects r;', then Rij is the shaded region between rill, ri", and P.

rCW e .

r CCW

A - P

Figure 3.2: Suppose wi, wit, wkj, and wki all correspond to regions outside of P, i.e., i < k < j < I i

and r; intersects rw. The region Ril bounded by r 7 and rc" contains both the region Rij

bounded by r and rl (shaded with horizontal lines) and the region Rkl bounded by r and

rcw (shaded with vertical lines). Moreover, the intersection of R,, and Rkj is exactly the region Rkj

bounded by r"7 and r w.

and
/ area(R,,) if i > j and r " intersects ric, and

= 0 ootherwise.

Lemma 3.1 Both W and W' satisfy the Monge condition.

Proof We only prove the lemma for W; the proof for W' is similar. For 1 :< i < k < n

and 1 < j < I < n, we must show that w i + Wk1 5 wit + wkj. We consider two cases. If

either wit = oo or wk, = c0, then the Monge condition follows immediately. If, on the other

hand, wit and wki both correspond to regions outside of P (RAt and Rk,, respectively), then

wii and wki must also correspond to regions outside of P (Rii and RkV, respectively), and the

four regions must overlap as in Figure 3.2. Now consider the region R i U Rkz. It has area

wii + wk, - wk,, since the intersection of R i and Rk, is exactly RkI. Moreover, R~i U RI is
contained in RI, which implies wi, + Wk1 - Wki wit or wi, + wk, :_ wit + wkj.E

By summing d-dimensional extensions of W and W', we obtain the d-dimensional array

A = {a 1 ,12. .}, where

aij,...,i =- Wil i2 + Wi2,i3 + + 1 .dl d,'i•
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A is clearly a Monge-composite cycle-decomposable array. Furthermore, A contains an
entry corresponding to every possible flush circumscribing d-gon. Specifically, the area ofcontacteponin ever
the flush circumscribing d-gon with contact points e,1 , e2 , , ',

ai2,-.. + area(P). Moreover, only those entries corresponding to circumscribing d-gons are
less than c; thus, to find a minimum area flush circumscribing d-gon, we need only find a

maximum entry in A.
By applying Proposition 2.11 directly, we can find this entry in O(dn lg n) time. However,

this time complexity can be reduced to O(dn + n lg n) using a theorem concerning the area
of interleaving d-gons. (The theorem we prove is actually significantly more general than
we need it to be in obtaining an O(dn + n lgn) time algorithm for the minimum area flush
circumscribing d-gon problem, but we will use it again later in this section in the context of
two other related problems.)

Before we can prove this theorem, however, we first need a few more definitions. Let Q.
and Qb denote circumscribing d-gons. We define an edge exchange operation as follows. Let
E denote the union of Q, and Qb's edges. To exchange edges between Qa and Qb, we select
a d-edge subset E' of E, and form two new circumscribing d-gons, the first consisting of the
edges of E' (extended or shorter.ed as necessary to form a circumscribing d-gon) and the
second consisting of the edges of E - E'.

Now let Q, and Qb denote sets of circumscribing d-gons. We will say that Q' and Qb
are closed under edge exchange if for any d-gon Qa E Qa and any d-gon Qb E Q6, any edge
exchange between Q, and Qb produces a d-gon in Q. and a d-gon in Qb.

*Theorem 3.2 Suppose two sets Qa and Qb of circumscribing d.gons are closed under edge

exchange. Furthermore, suppose that Qa has minimum perimeter among d-gons in Q, and
that Qb has minimum perimeter among d-gons in Qb. Then Qa and Qb interleave.

Proof Suppose Qa and Q, do not interleave. Let a,, a2 ,...,ad be the contact points of
Qa, and let bb2, ... , bd be the contact points of Qb. Since Q. and Qb do not interleave,
there exists at least one pair (ai 1, a,) of consecutive contact points of Q. such that no
contact points of Qb lie between ai-I and ai (inclusive) in the counterclockwise ordering of
P's vertices and edges. There also exists at least one pair (bi, bi+i) of consecutive contact

points of Qb such that no contact points of Q. lie between bj and bj+l (inclusive). Moreover,
there exists such a pair (ai- 1, a,) and such a pair (bi, bj+ 1) separately only by alternating
contact points. In other words, there exist i, j, and k, such that the contact points between
ai-1 and bj+l are (in order)

a -,abk, ai, klai+2,... , aj_ k+i, , bj+1.

alternating contact points

Now suppose we exchange edges between Q, and Qb and form a d-gon Q1 with contact
points

a,,.. ., ai- 1, bk, bk+l, . , b, a-k+i+l ., ad

and a d-gon Q' with contact points

bi,...,b - ,ai ,aj+ ,....,aj-k+i, b+l, bd.
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4r' , bk

k3

Figure 3.3: The sum of the areas of Qa and Q& (indicated by the dotted lines) is exactly the sum
of the areas of Q: and Q'b (indicated by the shaded lines) plus the area of the two shaded regions.

For any two contact points c and c', let Rec denote the region outside P bounded by P and
lines through the edges of Q0 or Qb touching c and c'. As is suggested in Figure 3.3,

area(Q'a) + area(Q ,) = area(Q0 ) + area(Qb)

- area(Ra,.a)ae(b._.l bk) - area(Rb,bl )

+ area(Ro,_.. ,b, ) + area(R~b,,oJ_+,+, ) l
+ area(Rbk- 1. ,) + area(RG,-k+,,b,+l)"

Since bk-1. precedes ai... in the counterclockwise ordering of P's vertices and edges,

J+I

area(Rb,,) + area(R fQ,k) < area(Rbe,be) + irea(ctl_,e),

by the same argument we used in the proof of Lemma 3.2. Similarly,

area(Roacpkb+ ) + area(Rbc,, k +1,) < area(R ,_rgdh+,o, e+,) + area(RbP, ).

Thus, area(Q') + area(Qb) < area(Qa) + area(Qb). Since Q0 and Qb are closed under edge

exchange, one of the new d-gons is in Qa and the other is in Qb. Without loss of generality,
we assume Q" E Q0 and Q Qb. Now eitherea( area() area(Q) or area(Q,) < area(Qs),
both of which are contradictions. -

Corollary 3.3 Let Q, be a minimum area flush circumscribing d-gon with e' as a contact

point. Every minimum area flush circumscribing d-gon interleaves Qi.

Proof Any edge exchange between a circumscribing d-gon with er as a contact point and

an arbitrary circumscribing d-gon produces a circumscribing d-gon with e ' as a contact point
and an arbitrary circumscribing d-gon. Thus, this corollary follows from Thereom 3.2.

Returning to the problem of fiing a minimum area flush circumscribing d-gon, note
that finding a minimum area flush circumscribing d-gon Qi with e?' as a contact point is
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equivalent to finding a minimum entry in first plane of A. This can be done in O(dn) time
(since this plane is path-decomposable). Let eP ,...,eP be the contact points of Q, (by0 Jd
definition, j, = 1; by convention. jd+l = n). These edges define d intervals I, . . . , Id of edges
from P, where Ik = [ef, e .P ]. Corollary 3.3 tells us that we need only consider edges in lk
for the k-th contact point of a minimum area circumscribing d-gon. In other words, we need
only search the nj x n2 x ... x nd subarray of A, nk = jk+1 -j + 1, containing those entries
ai,i,2 ,....id where ik < ik < jk+1 for all k between 1 and d. Since

d

Efnk = 0(n)
k=1

and every subarray of a cycle-decomposable array is also cycle-decomposable, we can use
Theorem 2.11 to find a minimum entry in this subarray, corresponding to a minimum area
flush circumscribing d-gon, in 0(n lg n) additional time. This gives the entire algorithm a
time complexity of 0(dni + n Ig n).

3.1.2 Using the Best Flush d-gon to Obtain the Best Arbitrary d-gon

In [DeP87], DePano provides the following geometric characterization of minimum area cir-
cumscribing d-gons.

Lemma 3.4 ((DeP87]) Let P be any convex n-gon. For 3 < d < n, if Q is a minimum
area d-gon Q circumscribing P, then either

1. all d edges of Q are flush with P, or

2. d - 1 edges of Q are flush with P, and the non-flush edge is a balanced d-edge.

This lemma allows us to relate minimum area flush circumscribing d-gons and mini-
mum area arbitrary circumscribing d-gons. Specifically, we have the following corollary to
Theorem 3.2.

Corollary 3.5 Let Q' be a minimum area flush circumscribing d-gon. Every minimum area
circumscribing d-gon Q interleaves Q'.

Proof Let Q' denote the set of all flush circumscribing d-gons, and let Q denote the set
of all circumscribing d-gons whose first d - 1 edges are flush with P and whose d-th edge is
a balanced d-edge. By Lemma 3.4, every minimum area circumscribing d-gon is in Q U Q'.
Moreover, every minimum area circumscribing d-gon has minimal area among d-gons inQuQ'.

Now, Q' and Q U Q' are clearly closed under edge exchange. Thus, by Theorem 3.2, every
minimum area circumscribing d-gon must interleave every minimum area flush circumscribing
d-gon. U

Now suppose we have found a minimum area flush circumscribing d-gon Q', using the
* techniques of [BDDG85]. Let eP,..., eP be the contact points of this d-gon. Without loss of

generality, assume ji = 1 (if it is not, we can renumber the edges of P). Also, for notational
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convenience, let jd+1 = n. The edges ef,..., ef define d intervals Id..., ld of edges from
P, where hk = [ef, ef]. Lemma 3.5 tells us that we need only consider edges or vertices
in lk for the k-th contact point of a minimum area circumscribing d-gon Q. (A vertex is W
considered to be in Ik if both the edges incident to it are in Ik.) Furthermore, we can use
Lemma 3.4 to show:

Proposition 3.6 There are at most three intervals that might contain the contact point of
the non-flush edge of a minimum area circumscribing d-gon Q. Moreover, we can identify
these intervals in O(d) time.

Proof For each edge ef of P, let rscw be the ray containing ef with vp as its origin. Now
for each interval lk, consider the ray rq. associated with the interval's first edge ef. Let ck

be rr's angle with respect to r", measured in a counterclockwise direction. Clearly,

0 = al <a 2 <..<c d<27r.

Now suppose the non-flush edge of Q is e?. It must contain an edge or vertex of P in
the interval Ik. Moreover, the contact point of ek. 1 is an edge ef' E Ik-I and the contact
point of ek+ 1 is an edge e' E Ik+i. Since ef lies in 41,k, the angle r cc forms with rc is at
least ak_1. Similarly, since e' lies in 1k+I, the angle rc, forms with rcc is at most ok+2.
Furthermore, DePano's lemma tells us that eQ is a d-edge, i.e., the lines containing e?_ 1 and
ek+1 intersect on P's side of the line containing e?. This implies (ak+2 - ak-_) mod 27r > 7r,

and this inequality can hold for at most three values of k.
To identify those intervals that might contain the contact point of the non-flush edge of

Q, we need only compute ak for each interval Ik and then (ak+2 - ak-1) mod 27r for each k,
which may be done in O(d) time. E

We can check the possibility of the nonflush edge lying in the interval Ik as follows. Let
ef be any edge of P in Ik-1. Let eF be any edge of P in 'k+. Define Qj to be the set of
all circumscribing d-gons Q satisfying the following constraints:

1. Q's (k - 1)-st contact point is the edge ef',

2. Q's k-th contact point is an edge or vertex in Ik,

3. Q's k-th edge is a d-edge,

4. Q's (k + 1)-st contact point is the edge ef, and

5. for 1 < I < k - 1 and k + 1 < I < d, Q's l-th contact point is an edge in It.

Also define Qi, = U Q,..

Lemma 3.7 For any e,' E Ik-1, we can find a circumscribing d-gon Q, E Q of minimal
area in O(n) time.
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Proof We begin with a few more definitions (borrowed from [ACY85]). An h-sided (ij)-
* chain is a polygonal chain C = {C,..., ec} such that

1. ec is flush with ep,

2. ec is flush with ef, and

3. for 1 < 1 < h, elC has a contact point in l(k+t)modd.

C is flush if all its edges are flush. The extra area of C is the area of the bounded (but
perhaps disconnected) region between C and P.

For each edge ef' E Ik+l, let Cjj be an optimal flush (d- 1)-sided (j, i)-chain (i.e., its extra
area is minimal), and let C, be an optimal 3-sided (i,j)-chain. Combining C, -and C!.- gives
an optimal circumscribing d-gon Q,, from Qj,. Moreover, given Qjj for each e ' E Ik+l, we
can pick the best of these d-gons in O(n) time to obtain an optimal circumscribing d-gon
from Qj. Thus, if we can find an optimal flush (d - 1)-sided (j, i)-chain and an optimal
3-sided (ij)-chain for each e' E Ik+l in O(n) time, we will have established the lemma.

To find an optimal flush (d - 1)-sided (j, i) chain for each ef E Ik+,, we first define the
(d - 2)-dimensional path-decomposable array A = {ai,,. ..... id_2}, where

aj, ... ,2 = il_ + , i2 + * * ' Wi_d-k-1 .id- ++k "k+l-k+2 + + i- 2 ,i-

(We defined the arrays IV = {w,j and W' = {w,,j} earlier in this section, in the context
of optimal flush circumscribing d-gons.) Now suppose It = li,.+1] for 1 < I < d. Let

* ni = j1+1 - j, + 1, and let A' be the ni X n2 X ... X nd-2 subarray of A containing entries
ajj,i2. .i,-2 that satisfy j(t+k)modd :5 it _ 37(+k+l)modd for 1 < I < d - 2. The optimal flush
(d - 1)-sided (j, i) chain corresponds to the maximum entry in the j-th plane of A' (the
plane containing those entries of A' whose first coordinate is j). Since d-2 O(n),
Theorem 2.10 tells us that we can compute these plane maxima in O(n) time.

To find an optimal 3-sided (i,j)-chain for each ef E Ik+1, we first recall that Lemma 3.4
tells us we need only consider 3-sided chains whose middle edge is a balanced d-edge. We
will call this middle edge a closing edge for e? and ef'.

Now suppose e? is a balanced closing d-edge for e7 E Ik-1 and ef' E Ik+l. e?'s first
endpoint must lie on the line Li containing et, and its second endpoint must lie on the
line L, containing ef. Moreover, since e? is balanced, its second endpoint must also lie
on the chain C defined as follows. For each et E Ik, let ec21-1 be the segment on the line
containing er whose first and second endpoints are twice as far from Li as are efis first and
second endpoints, respectively. C consists of these segments, plus segments e2 parallel to Li
connecting e2_1 and e1+1 for 1 < 1 < jIkj. This is suggested in Figure 3.4. We will denote

the endpoints of ec by vc and vN+ "

Using what we know about the angles of rays containing el E C and ef E lk+l form
with respect r , we can prove the following two propositions about C and the lines Lj
containing edges in lk+,.

Proposition 3.8 For all ef E 1k+1, L1 intersects C at most once.

* Proposition 3.9 For all ef and e, in Ik+1, j' > j, Lj intersects C before Lj, does, i.e., if
Lj intersects e, then Lj, intersects e, 1' > 1.
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Figure 3.4: Every balanced closing d-edge for a particular ef E Ik-1 and any ef E Ik+1 must
have one endpoint on the chain C.

The first proposition tells us that there is at most one balanced closing d-edge corre-
sponding to each ef E lk+. The second allows us to find all these closing edges in 0(n)
time. We begin by computing C, which can be done in 0(n) time. We then check whether
the line L containing the first edge in Ik+l intersects e'. If L does not intersect this segment,
we check whether it intersects 4c . If again there is no intersection, we move on to 4. We

continue in this manner until we find the segment ec that L intersects. This gives us the
closing edge for the first edge of Ik+j Next, we check whether the line L' containing the
second edge of Ik+l intersects cc. If there is no intersection, we move on to segment e+ 1.
We continue in this manner until all closing edges are found. It is easy to see that only
0(n) time is required. Also, Proposition 3.9 guarantees that this approach will find all of
the desired intersections, which in turn gives us the optimal 3-sided (i,j)-chains. U

To complete our algorithm, we require a third corollary to Theorem 3.2.

Corollary 3.10 For any ef and ei in 1L-1, every optimal Qi E Qj interleaves every optimal
Qi, E Q,,.

Proof This corollary follows immediately from Theorem 3.2, since Qj and Qj, are closed
under edge exchange. •

This corollary, together with Lemma 3.7, allows us to find an optimal circumscribing
d-gons for each Qt such that ef E ,_1 in 0(n Ig n) total time. We use the natural divide-
and-conquer approach of Theorem 2.6. Let I, = [ji,j+i] for 1 < 1 < d, and let n =
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j1+1 - jt + 1. We first find an optimal circumscribing d-gon Qi E Q fori = jk-1 + f lk1/2].
By Corollary 3.10, the contact point of Q, in interval I,, 1 < I < d, splits that interval into
two intervals I, and I', such that the contact points of any optimal circumscribing d-gon for
Q', Jk-1 < i' < i, must lie in the intervals I'... Id, and the contact points of any optimal
circumscribing d-gon for Qi', i < i' < ik, must lie in the intervals I', ... , I'. If we recursively
solve the two subproblems associated with the intervals I,.. . , Id and the intervals I I',...,

we obtain a recurrence with solution O(n lg nk.-1) = O(n lg n) for the time required to find
an optimal circumscribing d-gon for each Qj such that ef E lk-i.

By choosing the best of the nk-I circumscribing d-gons obtained in this manner (which
can be done in O(n) time), we obtain a minimum area circumscribing d-gon; thus,

Theorem 3.11 Given a convex n-gon, a minimum area circumscribing d-gon can be com-
puted in O(dn + n lg n) time.

3.2 Perimeter Minimization

Just as the techniques given by Boyce et al. [BDDG85] for finding a maximum perimeter
inscribed d-gon can be used to find a minimum area flush circumscribing d-gon in O(dn +
n Ig n) time, they can also be used to find a minimum perimeter flush circumscribing d-gon
in the same amount of time. Unfortunately, we lack a lemma analogous to Lemma 3.4 for the
case of perimeter minimization, and thus it is unclear how to use this minimum perimeter
flush circumscribing d-gon to obtain a minimum perimeter arbitrary circumscribing d-gon. In

* fact, the only previous algorithm for the minimum perimeter circumscribing d-gon problem,
due to DePano [DePS7], is restricted to the case of d = 3. Specifically, DePano obtained an
0(n 3 ) time algorithm for the minimum perimeter circumscribing triangle problem. In doing
so, he proved the following two lemmas, which we will use in obtaining an O(n ig n) time
algorithm for the problem.

Lemma 3.12 ([DeP87]) For every convex n-gon P, there exists a minimum perimeter
circumscribing triangle Q with at least one edge flush with P.

Lemma 3.13 ([DeP87]) For any triple (ij, k), there is a unique minimum perimeter cir-
cumscribing triangle Tj,k whose first edge eTj is flush with edge ef of P, whose second edge

TTe2 contains vertex v'7 of P, and whose third edge e3j contains vertex v~k of P. Moreover, this
triangle satisfies the following condition: there exists a point p on e and P and a point q
on e and P such that the distance between p and the endpoint shared by e1 and 2 equals
the distance between q and the endpoint shared by er and (see Figure 3.5. Note that p

must be vP if e2 is not flush with P, and q must be vkp if e4T is not flush with P.

Lemma 3.12 tells us that we need only consider circumscribing triangles from the set

T" = f{T,.k II< i< n,l1< j< k<n},

as this set must contain a minimum perimeter circumscribing triangle. For any i, j, and k,
* Lemma 3.13 allows us to compute Tij,k (and its perimeter) in constant time (see (DeP87] for

details).
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Figure 3.5: If Aabc is the minimum perimeter circumscribing triangle containing edge eF and
vertices vF and vkP of P, then there exist points p and q on both P and Aabc such that the distance

11 between a and p equals the distance 12 between b and q.

DePano's 0(n3 ) time algorithm for the minimum circumscribing triangle problem is noth-
ing more than a brute force search through 7 - he just computes the perimeter of every
triangle in T and then outputs one with minimal perimeter. We obtain a substantially better
algorithm by identifying a multidimensional Monge array associated with T and applying
our array-searching techniques.

Specifically, we define the following n x (2n -2) x (2n -1) array A = {aijk}. For 1 < i < n
and i < j < k < i + n, we let aik be the perimeter of Ti,j,k (which we denote per(TJ.)),
provided this triangle exists (the indices j and k are modulo n). If this triangle does not w
exist, we let aik be oo. For all other values of i, j, and k, we also define aGik to be oc.

Now, every triangle in 7 is represented in A, and the only entries in A that are less than
n correspond to triangles. Thus, by Lemma 3.12, the minimum entry in A corresponds to
the minimum perimeter circumscribing triangle. Moreover, since Lemma 3.13 implies each
entry of A can be computed in constant time, the following lemma gives us an O(n Ig n) time
algorithm for computing a minimum perimeter circumscribing triangle.

Lemma 3.14 A satisfies the Monge condition.

Proof Consider any two-dimensional plane of A corresponding to a fixed value i of A's
first coordinate. Suppose this plane does not satisfy the Monge condition, i.e., there exist
j < j' and k < k' such that

a 3k + aij,,k > ai,, + ajk. (3.1)

We cannot have j' > k, since this would mean ai,k = no, which contradicts (3.1). Similarly,
T,,k must exist, which implies T,,k, Ti1 ,e,, and Tij'k also exist. Now suppose we exchange
edges between Ti1k, and T,k. Specifically, we let Ti'g, be the triangle formed by the first and
second edges of Tick, and the third edge of Tijk (extended or shortened, as necessary, to form
a triangle), and let Ti), k, be the triangle formed by the first and second edges of Tij,,'k and
the third edge of Tick'. This is suggested in Figure 3.6. Now it is easy to verify that

per(T! k) + per(T!,k,) < per(Tjk,) + per(T,'k).
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Figure 386: Suppose we exchange edges between the triangles Tk, and Tij k (indicated by
the dotted lines) and obtain the triangles Tk and T',k, (indicated by the shaded lines). Then
per(T!'.) + per(T'k,) _ per(Tijko) + per(Tij'k), since the length of the line segment a plus the
length of the line segment b is at least the length of the line segment b plus the length of the line
segment c.

Furthermore, per(Tik) per(Tjk) and per(T,k,) :_ per(T',k0), since Ti1, and Tj, , have
minimal perimeter among circumscribing triangles that share their contact points. Thus,

per(Tik) + per(Tj,k,) 5 per(T,3&,) + per(Ti,k),

which contradicts (3.1).
In an similar fashion, we can show that every two-dimensional plane of A corresponding

to a fixed value of the second coordinate or a fixed value of the third coordinate also satisfies
the Monge condition. U

It is unclear whether A is Monge-composite, since fixing any two indices of A does not
fix the both the edges of the circumscribing triangle corresponding to these indices. Never-
theless, Lemma 3.14 allows us to apply the array-searching algorithm given in Theorem 2.6
and obtain:

Theorem 3.15 Given a convex n-gon P, a minimum perimeter triangle Q circumscribing
P can be computed -n O(nlgn) time.

It remains open whether a minimum perimeter circumscribing triangle can be found in
o(n Ig n) time and whether there exist efficient algorithms for computing minimum perimeter
circumscribing d-gons.

23



4 Dynamic Programming Using Monge Conditions

4.1 Frances Yao's Paper Revisited

In [YaoSO], Yao considered the following dynamic programming problem. Let w(i,j) be a
weight function defined for 1 < i < j < n and satisfying the following two constraints: for

< <i< i' <j<j' <n,

w(i,j) + w(i',j') :_ w(i,j') + w(i',j) (4.1)

and
w(i',j) :_ w(i,j'). (4.2)

(Yao called the first constraint the quadrangle inequality and referred to functions satisfying
the second constraint as monotone on the lattice of intervals, ordered by inclusion.) We want
to compute c(i,j) for 1 < i < j < n, where c(i,i) = 0 for 1 < i < n and

c(i,j) = w(i.j) + min {c(i.k - 1) + c(k,j)}S i<k<j

for 1 < i < j < n. In [YaoSO], Yao showed that this problem can be solved in 0(n 2 ) time. She
used this result to provide a simple alternate solution to Knuth's problem regarding optimal
binary trees [Knu73]; she also extended this approach to the computation of optimal t-ary
trees.

In this subsection, we reformulate Yao's dynamic programming problem in terms of
multidimensional Monge arrays and then use a result due to Wilber [Wi188], to obtain an
alternate O(n2) time solution for the problem. We begin with a lemma proved by Yao in
obtaining her 0(n ' ) time bound.

Lemma 4.1 ([Yao80]) The cost function c(i,j) satisfies the quadrangle inequality, i.e.,
c(i,j) + c(i',j') < c(i,j') + c(i',j) for 1 < i < i' < j < j' < n.

Yao's quadrangle inequality is precisely the Monge condition, except that the functions
w(i,j) and c(ij) do not correspond to complete arrays. However, if we let W = {wij}
denote the n x n array where

w(i,j) if i<j,
= { wij otherwise,

and we let C = {cij} denote the n x n array where

cj c(ij) if i<,

= {= 00 otherwise,

then both W and C satisfy the Monge condition. (Note that it is important that we define
wjj and ci, to be oc when i > j - if we instead define wjj and cij to be -oo when
i > j, as we might want to do if we were maximizing instead of minimizing, then W and
C would not satisfy the Monge condition or the inverse Monge condition.) Yao's dynamic
programming problem then boils down to computing the entries of C. Unfortunately, the
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results of [AKM*87] seems inapplicable at this point, at least in a straightforward manner,
* as we are neither interested in the row minima of C nor are the entries of C readily available.

Now consider the three-dimensional array D = {di,Aj), where we define di,kj = 4,k-I +
CkJ + Wij. Since we now have cij = minl<k<, di,kj, we have transformed the problem of
computing the entries of C to the problem of computing the tube minima of D. Moreover, D
is clearly a path-decomposable Monge-composite array (which means it satisfies the Monge
condition), but again the array's entries are not directly available. At this point, however,
we can apply the results of Wilber [Wil88].

Wilber considered the concave least-weight subsequence problem: given a weight function
v(p, q) defined for 0 < p S q !5 m and satisfying what Yao calls the quadrangle inequality,
compute f(q) for 0 < q < m, where f(0) = 0 and f(q) = mino<p<q{f(p) + v(p,q)} for
1 < q < n. We can convert this problem to an array-searching problem by letting V = {Vp,qI
denote the (m + 1) x (m + 1) array where

v(p,q) ifp!q,
vp,q = { c otherwise,

and letting E = {ep,q} denote the (m+1) x (m.+1) array where ep,q = f(p)+vp,q. The concave
least-weight subsequence problem is now the column minima problem for E. Moreover, since
v(p, q) satisfies the quadrangle inequality, V satisfies the Monge condition, which implies E
satisfies the Monge condition. In [WilSS), Wilber showed that this problem can be solved in
O(n) time, even though computing an arbitrary entry of E is not a constant time operation.

Returning to Yao's dynamic programming problem, consider the two-dimensional plane
of D corresponding to a particular value i of the first coordinate. The tube minima of D
lying in this plane are just the column minima of this plane. Moreover, the column minima
problem for the plane is an instance of the concave least-weight subsequence problem. In
particular, m = n - i, v,,q = Cp+i+l,q+i + wj,q+i, and f(q) = ci,q+i. Note that the array V

satisfies the Monge condition because the array C satisfies the Monge condition. Provided
ci,, is known for i > i (so that vp,q can always be computed in constant time), we can solve
this problem in 0(m) time using the algorithm given by Wilber in [Wil8F1. Th,,, to compute
the tube minima of D, we need only apply Wilber's algorithm n time,. ti1 . 1 the plane
corresponding to i = n, then to the plane corresponding to i = n - 1, and so on down to the
plane corresponding to i = 1. This gives the following theorem.

Theorem 4.2 If the weight function w(i,j) satisfies (4.1) and (4.2), then Yao's dynamic
programming problem can be solved in O(n 2 ) time.

Now suppose the weight function w(i,j) satisfies

w(i,j) + w(i',j') > w(i,j') + w(i',j) (4.3)

and
w(i',j) _ w(i,j') (4.4)

for 1 < i < i' < j < j' < n. By adopting the procedure given above, we can obtain the
following theorem.
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Theorem 4.3 If the weight function w(ij) satisfies (4.3) and (4.4). then Yao's dynamic
programming problem can be solved in O(n 2a(n)) time, where a(n) denotes the inverse Ack-
ermann function.

Proof This proof is identical to that given above except that now the arrays W, C, and
D defined above are no longer Monge (or even totally monotone). The column minima
problem for the plane of D corresponding to a particular value i of the first coordinate
is now equivalent to the convex least-weight subsequence problem considered in [EGG88]:
given a weight function v(p, q) defined for 0 < p 5 q 5 m such that v(p, q) + v(p', q') >
v(p, q') + v(p', q) for 0 < p < p' 5 q S q' < m, compute f(q) for 0 < q 5 m, where f(0) = 0
and f(q) = mino<p<q{f(p)+v(p, q)} for 1 <q < m. Klawe and Kleitman [KK88] have shown
that this problem can be solved in O(na(n)) time. Thus, by applying Klawe and Kleitman's
algorithm n times, we can obtain the entries of C in O(n 2a(n)) time. U

It remains open whether the time complexity given in Theorem 4.3 can be improved from
O(n2 a(n)) to 0(n2).

4.2 Waterman's Problem

The primary structure of a single-stranded RNA molecule is the sequence of ribonucleotides
or bases making up the molecule. When the primary structure of an RNA molecule is
known, the question of which bases form pairs (thus pinching off loops in the chain of bases)
becomes important - this structure is referred to as the secondary structure of the RNA.
In [Wat78], Waterman argued that predicting the secondary structure of an RNA molecule
from its primary structure is closely related to solving some dynamic programming problems. W

Among the dynamic programming problems he described is the following: given a weight
function w(i,j) defined for 1 < i < j 5 n and satisfying the quadrangle inequality (i.e.,

w(k, 1) + w(p, q) :5 w(k, q) + w(p, 1) (4.5)

for 1 <k <p l 1 < q < n), compute

e(ij) = mi.n {c(i',j') + w(i' + j',i + j)
1<i1<1
ID '<j

for all i and j between 1 and n, where e(i, 1) and e(1,j) are given for all i and j and c(i,j)
can be computed from e(ij) in constant time.

The naive approach gives an O(n4 ) time algorithm for this dynamic programming prob-
lem. Waterman and Smith improved this time bound to 0(n') in [WS86], and then recently
Eppstein, Galil, and Giancarlo [EGG88] obtained an 0(n 2 lg 2 n) time algorithm for the
problem. (They also obtained an O(n 2 lg n lg lg n) time algorithm for the special case of w a
logarithm or other simple function.) Using array-searching, we show:

Theorem 4.4 If the weight function w(ij) satisfies the quadrangle inequality (4.5), then
Waterman's dynamic programming problem can be solved in O(n2 lg n) time.
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Proof We only prove the theorem for the case c(i,j) = e(i,j), but the proof is easily
generalized to any c(ij) that can be computed from e(i,j) in constant time.

We begin by extending the function w(i,j) to form an n x n array, just as we did in the
context of Yao's dynamic programming problem. In particular, we let 14 = {w1,.} denote
the array where

fi w(i1j) if i< j,{0 wi ) otherwise.

As before, this array satisfies the Monge condition. Ve will also view the function e(i,j) as
an n x n array E = {ej,} where eij = e(i,j), so that the problem is now that of computing
the entries of E.

We now require a few definitions and observations. We will say that an entry eij from E
stictly dominates an entry eii,, if i > i' and j > j'. Note that an entry of E depends only
on those entries it strictly dominates. We will also define the k-th diagonal of E to consist
of those entries eij such that i + j = k. Note that the only entry on the k-th diagonal of E
that we need to consider in computing e,,j is the minimum entry ei,j, on the diagonal that
is strictly dominated by ei,,. We will refer to this entry as a diagonal minimum.

With this is mind, we define

dk(i,j) = min eij,.

(If k = 1 or k > i + j-2, we let dk(i,j) = oo.) We then have

eij = min {dk(i,j) + Wk,+j}.
l<k<2n

We can now describe our algorithm for computing the entries of E. We use a divide-
and-conquer approach, reminiscent of an algorithm given by Aggarwal and Suri [AS87] for
finding the largest empty corner rectangle. Without loss of generality, we assume n is a
power of 2. We begin by partitioning E into four n/2 x n/2 subarrays A, B, C, and D.
A contains entries from the first n/2 rows and first n/2 columns of E, B contains entries
from the first n/2 rows and last n/2 columns, C contains entries form the last n/2 rows
and first n/2 columns, and D contains the remaining entries. We then recursively compute
the entries of A; this requires T(n/2) time, where T(n) is the time required to compute the
entries of an n x n array. Next, we compute the effect of A on B, i.e., for each entry of B,
we obtain an upper bound on its value based on the entries of A. (Each entry in B is the
minimum of a number of terms; some of these terms depend only on entries from B; the
rest depend only on entries from A; we compute the minimum of those terms dependent on
entries from A.) We will explain later how this may be accomplished in O(n 2 ) time. We
then recursively compute the entries of B in T(n/2) time, taking into account the effect
of A on B, i.e., in assigning an entry of B its value, we always take the minimum of the
value we have recursively computed for this entry based on the entries of B, and the value
we have computed for this entry based on the entries of A. We repeat this process for C,
computing the effect of A on C in O(n 2) time and then recursively computing C in T(n/2)

* time. Finally, we compute the effect of A on D, the effect of B on D, and the effect of C on
D, all in O(n2) time, and then recursively compute D in T(n/2) time.
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This yields the recurrence T(n) < 4T(n/2) + 0(n ' ) for the time to compute all entries
of an n x n array. Since T(1) = 0(1), T(n) = O(n'lgn).

We can compute the effect of A on B as follows (computing the effect of A on C, A on
D, B on D, and C on D may be done in an analogous manner). For 1 < i < n/2, each entry
ei,,+ft/2 in row i of B strictly dominates the same set of entries in A and thus depends on
the same diagonal minima. This motivates defining the (i + n/2) x n/2 array X'= {x,}
where , = dk(i, 1 + n/2) + wk,i++,,/2. eij+n 2 can then be expressed as the minimum of
the following two minima:

min x
1<k<i+n/2

and
Tirn { ei',,J'+n/2 + Wi1+j'+n/2,i+j+n/2 1.

1<i <sl .,<j

As the first of these quantities depends only on entries in A and the second depends only on
entries in B, computing the effect of A on B reduces to computing the column minima in
all n of the X'. Furthermore, observe that for all i between 1 and n/2, the array X' satisfies
the Monge condition, since W satisfies the Monge condition. Thus, we have the following
lemma.

Lemma 4.5 The column minima of X' for all i between 1 and n/2 can be computed in
0(n 2) time.

Proof of Lemma 4.5 The dk(i, n/2) for 1 < i < n/2 and 1 < k < n can be computed in
0(n 2) time, since dk(1, n/2) = oo for 1 < k < n,

dk(in/2) min{dk(i- 1,n/2),e_-,ki+l) if i < k < n/2 + i-2,
dk(i - 1, n/2) otherwise,

for 2 < i < n/2 and 1 < k < n, and eij is known for i and j between 1 and n/2. Once this
has been done, any x, can be computed in constant time, which means we can apply the
algorithm of [AKM*871 n times and obtain all the desired column minima in an additional
0(n 2) time. U

This completes our proof of Theorem 4.4. U

In [EGG88], Eppstein, Galil, and Giancarlo also considered the variant of Waterman's
problem in which the weight function w(ij) satisfies the inverse quadrangle inequality, i.e.,

w(k, 1) + w(p, q) >_ w(k, q) + w(p, 1) (4.6)

for k < p < 1 < q). They obtained an 0(n 2 1g2 n) time algorithm for this problem using
the same techniques they employed for weight functions satisfying the quadrangle inequality.
We can apply our techniques to this variant of Waterman's problem, too, and obtain the
following theorem.

Theorem 4.6 If the weight function w(ij) satisfies the inverse quadrangle inequality (4.6),
then Waterman's dynamic programming problem can be solved in O(n' lgn) time. V
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Proof This proof is identical to that given above for weight functions satisfying the quad-
* /rangle inequality, except that the array IV defined above is no longer Monge (or even totally

monotone). However, the arrays X' are Monge (they satisfy the inverse Monge condition),
since they are formed from subarrays of 14' that are Monge. Thus, we can apply the algorithm
of [AKM*87] as before. a

Note that the divide-and-conquer approach our algorithms employ can be used to obtain
an O(n lg n) time solution to the one-dimensional version of Waterman's problem, namely,

the concave or convex least-weight subsequence problem considered by [HL87, KK88, Wil88].
However, Wilber [Wil88] solves the concave least-weight subsequence problem in O(n) time
by an elegant modification of [AKM*87], and Klawe and Kleitman [KK88] solve the convex
least-weight subsequence problem in O(na(n)) time. This suggests that perhaps an o(n 2 Ig n)
solution to Watermaii's problem might be obtainable.

5 VLSI River Routing

In the section, we apply array-searching to a number of problems that arise in VLSI river
routing. These problems involve two pieces (or modules) P and Q of a VLSI circuit that
need to be wired together. We model P as a sequence of n points (or terminals) lying on a
horizontal line in the plane. We let pi denote both the i-th terminal of P and the terminal's
distance from Pl. We also assume p, < P2 < ... < Pn. Similarly, we model Q as another
sequence of n terminals lying on a second horizontal line, where q, denotes both the i-th

terminal of Q and the terminal's distance from q1, and q, < 92 < ... < 9". A placement
for Q (relative to P) consists of an offset and a separation, which give qj's horizontal and
vertical position, respectively, relative to pl. Given a placement for Q, a routing is a set of
n wires (represented by continuous curves), where the i-th wire connects pi to qj. In river

routing (as opposed to more general wiring models), these wires must be nonintersecting.
Furthermore, the wires are constrained to satisfy a set of technology-dependent design rules.
At a minimum, the distance between any two wires is always at least some fixed constant,
which we take to be 1. Examples of other constraints include requiring that the wires are
rectilinear, i.e., they lie on a rectilinear integer grid (as they do in Figure 5.1), or that they
consist of straight line segments whose orientations with respect to the x-axis are multiples
of ?r/4. We say a routing is valid (for a particular set of design rules) if it satisfies the design
rules.

We are concerned with the following three placement problems:

1. Minimum Separation Problem. Given a set of design rules and a fixed offset, find the
minimum separation that allows a valid routing.

2. Offset Range Problem. Given a set of design rules and a fixed separation, find all offsets
that allow a valid routing.

3. Optimal Offset Problem. Given a set of design rules, find an offset minimizing the
separation necessary for a valid routing.

29



Q
q qz 2 q3  q4 q5  q6

P1  P2 P3  P4  P5  P6

P

Figure 5.1: A rectilinear routing connecting the modules P and Q.

EEL
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(a) (b)

Figure 5.2: The first five barriers about pi when (a) arbitrary wires are allowed and (b) only
rectilinear wires are permitted.

Before we can relate these problems to array-searching, however, we need a few more defini-
tions.

We say that the terminals of P and Q are monotone if pi _5 q for all i or if pi q
for all i. For any P and Q, we can assume that the terminals are monotone, since we
can always partition the terminals into maximal monotone blocks and find a routing for
each of the blocks independently. Without loss of generality, we assume pi qi for all i.
Since the terminals are monotone. we can assume that the wires are also monotone, i.e., the
y-coordinate of a wire is nonincreasing as the z-coordinate increases.

For 1 < i < n and 1 < k < n-i, we define the k-th barrier about pi to be the set of points
that delimit the closest possible approach to pi of the monotone wire going from pi+k to q,+k.
The barriers are determined by the design rules. For example, if the only design constraint
is the lower bound on the distance between wires (the case consider by Tompa in [Tom80]),
then the barriers are composed of circular arcs and line segments, as in Figure 5.2(a). If, on
the other hand, the design rules allow only rectilinear wires, then the barriers are rectilinear,
as in Figure 5.2(b).

Now consider the following n x n array A = {ai}. If i < j, then aij is the height at qj of
the (j - i)-th barrier about pi, as in Figure 5.3. If i > j, then a,j = 0. For i < j, the value
aij is the minimum separation possible for P and Q given the interaction of the terminal pi
with the wire running from p to qj.
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l (j-i)-th barrier about pi

Pi Pi

Figure 5.3: The interaction of pi with the wire running from pj to qj requires P and Q be separated
by at least aij.

In [SD81], Siegel and Dolev showed that the minimum separation possible for P and
Q is simply the maximum entry in A. They also showed that under some very general
assumptions about barriers, corresponding to a wide variety of design rules, the array A
is totally monotone. (In fact, their proof is easily extended to show A satisfies the Monge
condition.) Under the assumption that each entry of A can be computed in constant time
(which is true in most practical applications), Siegel and Dolev then gave an O(n Ig n) time
algorithm for the minimum separation problem. Aggarwal et al. [AKM*87] reduced this to
O(n) time by simplying applying their linear time algorithm for computing the row maxima
of a totally monotone array.

In this paper, we apply array-searching to the offset range and optimal offset problems.
We first show that the offset range problem can be solved in linear time for most design
rules that occur in practice. In particular, we consider design rules inducing what Siegel and
Dolev refer to in (SD81] as a family of similar concave barriers. Such a family of barriers is
characterized by a function h(x), where for 0 < x < 1, 0 < h(x) < 1 and h(r) is concave,
and for x > 1, h(x) = 0. The height of the k-th barrier about a terminal pi at a horizontal
distance of x from pi is then given by kh(x/k).

Given a fixed separation w, define the left offset function L(ij) and the right offset
function R(i,j) as follows: for 1 < i < n and 1 < j < n,

Li) pj- qj +(j -i)h-'(w/(j -i)) if j- i> w
) -o0 if j-i <w

and
Rai, d) pi - q - (i - j)h-'(w/(i - j)) if i - j > wR(i,j) = oiij<

00 ifi-j~w
Siegel and Dolev showed that the offset range for Q is

max L(ij), min R(ij)]1:<ij<5n I < i,.i< n

* They also proved the following theorem.
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Theorem 5.1 ([SD81]) Suppose r > 0, s > 0, and j > i + r. If L(i,j) < L(i + r,j), then
L(i,j+s) < L(i+r,j+s). Similarly, if R(ij) > R(i+r,j), then R(i,j+s) > R(i+r,j+s).

Now let L = {l,,j} denote the n x n array where lj = L(j,i) and let R = {r,j} denote
the n x n array where rij = R(j, i). An immediate corollary of Theorem 5.1 is the following.

Corollary 5.2 The arrays L and R are totally monotone. Furthermore, if L(i,j) and R(i,j)
can be computed in constant time, then the offset range problem can be solved in linear time
by computing the row maxima of L and the row minima of R.

Proof Consider any 2 x 2 minor of L, corresponding to rows i and k, i < k, and columns
j and 1, j < I. If I > i, then l,, = L(l, i) = -oo, which implies the minor is monotone. If, on
the other hand, I < i, then by Theorem 5.1, li < li, implies lk, < Ik,I, which again means
the minor is monotone. Thus, L is totally monotone. We can show R is totally monotone
in a similar manner.

If we can compute any entry of L or R in constant time, then we can apply the results of
[AKM*87] and compute L's row maxima and Rs row minima in linear time. We can then
compute the maximum of L's row maxima and the minimum of R's row minima in linear
time to obtain the offset range for Q. U

This corollary generalizes the results of Siegel [Sie88], who gave an 0(n) time algorithm
for the offset range problem when barriers are polygonal in nature.

Passing now to the optimal offset problem, Siegel and Dolev showed in [SD81] that this
problem can be solved for a particular set of design rules in O(41(n) Ig n) time if the minimum
separation problem can be solved for these design rules in 0(%F(n)) time. Consequently,
Corollary 5.2 gives us an 0(n lg n) time algorithm for the optimal offset problem for most
design rules used in practice. Though it remains open whether an o(n lg n) time algorithm
for this problem can be obtained for the class of design rules we consider, Mirazaian [Mir87]
has provided an elegant O(n) time algorithm for the case of rectilinear wiring; however, his
algorithm exploits the properties associated with such a wiring, and it is unlikely that his
techniques can be extended to other wiring models.

6 Open Problems

In this paper, we present a framework that allows us to obtain efficient algorithms for wide
variety of problems involving quadrangle inequalities. We leave a large number of problems
unresolved, however. These open problems may be divided into two types: those relating
directly to array-searching and those involving applications of array-searching.

Among the open problem relating directly to array-searching are the following:

1. In Subsection 2.1, we presented an 0(n Ig n) time algorithm for computing the plane
maxima of an n x n x n three-dimensional totally monotone array. This is the best
upper bound we have on the time necessary to solve this problem, even for the special
case of Monge-composite arrays, whereas the only lower bound known for either of
these problems is f0(n). Note that our algorithms for computing the plane maxima
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of a three-dimensional array A only make use of the monotonicity of A and the total
monotonicity of its planes. It is conceivable that an algorithm that takes advantage of
the stronger Monge condition might be able to solve the plane maxima problem for A
in o(nlgn) time.

2. In a similar vein, the only upper bound known for the time necessary to compute the
plane maxima of an n x n x... x n d-dimensional totally monotone array is O(n g - 2 n),
whereas 1l(dn) remains the only lower bound known for this problem. Reducing this
upper bound to something polynomial in d would be a major improvement. Again, it
is conceivable that the stronger Monge condition might be of use in this regard.

3. In [AK88], Aggarwal and Klawe defined an n x n staircase-monotone array to be a
totally monotone array with the entries in some contiguous region of the array replaced
by -o's, so that the array is no longer totally monotone. (This region is constrained
to lie in the upper left corner of the array and to be bounded by a staircase growing
up and to the right.) Aggarwal and Klawe showed that the row maxima problem for
such an array can be solved in O(n lg lg n) time and gave a number of applications in
which such arrays arise. Klawe and Kleitman [KK88] improved the time bound on this
problem to 0(na(n)), where a(n) is the inverse Ackermann function. The only lower
bound known for this problem is 11(n).

As for the applications of array-searching we present in Sections 3-5, we list the open
problems in these areas in their respective sections. Clearly, reducing any of the upper bounds
given for the open problems listed above will result in the improvement of the corresponding
application algorithms, but it is quite possible that exploiting additional properties asso-
ciated with the individual application problems may help in reducing their computational
complexity as well.

In addition to the applications that we describe in this paper, there are also a number
of problems that seem closely related to the notion of array-searching. Recall that Frances
Yao's dynamic programming algorithm requires that the weight function w(i,j) satisfy the
quadrangle inequality and an additional monotonicity constraint (namely, w(i', j') < w(i,j)
when i < i' < j' < j). Our algorithm for Yao's problem, given in Subsection 4.1, also
requires that the weight function satisfy this monotonicity constraint. This constraint seems
somewhat restrictive; there are a number of problems, quite similar to Yao's dynamic pro-
gramming problem, that involve weight functions satisfying the quadrangle inequality but
not the additional monotonicity constraint. For example, Gilbert [Gi179] has shown that a
minimum weight triangulation of a convex n-gon can be found in 0(n 3) time using a dy-
namic programming algorithm. Though the lengths of the diagonals added in triangulating
a convex n-gon do satisfy the quadrangle inequality, they do not obey Yao's monotonicity
constraint, thus neither Yao's techniques nor our own are directly applicable. Furthermore,
by incorporating the notion of optimal t-ary trees, Gilbert's algorithm can be extended to ob-
tain an 0(n 3 g m) time algorithm for the problem of partitioning a convex n-gon into convex
m-gons such that the sum of the perimeters of these m-gons is minimized [LLS87]. However,
again, despite the similarity with Yao's dynamic programming problem, no o(n 3 1gm) time

* algorithm for this problem is known.
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